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Abstract

For an entire function f , we define the difference operators as
A f(z)="f(z+c)-1(2)
-1
and A" (z) = AV1 (A,  (2))
where Cis a non-zero complex number and N > 2 being a positive

Keywords: integer. If ¢ =1, we write A_ f(z) = Af(2) .
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d
Now let us consider F = f"(f" —1)H(f(z+cj))“, where

j=1

f being an entire function and n,m, »;(j =123,......d) areall

function,order(lower non-negative integers. Then F is called the difference monomial
order),¥-order(P- generated by entire f .
lowerorder,type(lower In this paper, we will establish some comparative growth properties

_ ~ of differential —difference polynomials of the above form generated
type),¥ ty.pe(‘I’ lower by an entire function f as indicated. In fact, the results obtained here
type) maximum term. improve some earlier theorems.
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Introduction
Let f be an transcendental entire function defined in the open complex plane C . A difference-monomial
generated by £, is an expression of the form

d
F=ram =] [tz +g)
j=1
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where m, n and y; are all non-negative integers.
Now for the sake of definiteness let us take,

Mifl1= (" = DIl (f(z + )
where1 <i<d.
If My[f],M;[f],....M,[f] be such monomials in f as defined above, then

Bf] = aiMy[f] + a; My [f] + -+ a, M, [f]

where a; # 0(i = 1,2, ...n) is called a difference-polynomial generated by f.
Let f be an entire function defined in the open complex plane C. The maximum term p(r,f) of
f =Yw_a, z"on |z|=ris defined by

u(r, f) = max,>o(la, ™).

To start our paper we just recall the following definitions:
Let W:[0,00)—(0,20) be a non-decreasing unbounded functionm, satisfying the following two conditions:

. . loglalyr

(I) hmr—)oo log [‘”’1’(1”) -
and

ey 7 log a1y (ar) _

(”) llmr—mo log [(l]l[l(r) -

for some a > 1.

Definition 1 The ¥-order p(;yy and P-lower order Ay, of an entire function of an entire function f is defined
as follows:

..... log Plm(r.f) log Plm(r.f)
log ¥ (r) log ¥(r)

where log¥lx = logitlog 1 x)for k=1,2,3,.... and logllx = x.

If p¢ryy < oo then fis of finite P-order.Also p(r -0 means that fis of ¥-order zero. In this connection
following Liao and Yang [6] we may give the definition as below:
Definition 2 Let f be an entire function of order zero.Then the quantities p* 9 and A"y, of an entire function f
is defined as
»»»»» log M (r ) log M (r f)

p %) log [2]¥ (1) log [2] ¥ (1)

In the line of Datta and Biswas [3] gave an alternative definition of zero W-order and zero W-lower order of
an entire function may be given as:

Definition 3 Let f be an entire function of order zero.Then the quantities and p** ) and ™ ¢y of an entire
function f is defined by:

i logM (r,f) S — iy logM (r,f)
p #x s wy= limiSup, o, o8 ¥ () and A™ ¢y = limifinf, ., .
Sincefor0 <r <R,
R
u(r, f) S M@, f) < Z=u(R,f)
it is easy to see that
* — i log [ka(rf) * — limi3 log [Z]u(r,f)
Py = limiSup, T and A" ¢y = llmi_.lm,ﬁ._,w_ilog o)
T log 2Im(r.f) . i log ™y (r.f)
P *(f,’l’)_ llm-...s‘uprqw W and A Fw) = llm:..l.’rlﬁ._,oo_m
— i logp (r.f) *k — limid logp (r.f)
p *x s yy= limiSup, o, g ¥ ) and A™ ¢y = limfinf, ., g ¥ "
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Definition 4 The P-type o(; v, and 'P-lower type G 4 of an entire function £ are defined as
.......... logM (r.f)
Y ()P ¥)

With the help of notion of maximum terms of entire functions, Definition 4 can be alternatively stated as follows:

O<p(f'ly) < oo,

Definition 5 The P-type oy, and V- lower type 6,y Of an entire function f are defined as

----- logu (r.f) logu (r.f)
Y ()P ¥) Y ¥) ?

O<,D(f_r,y) < 0,

Definition 6 A function A, is called a lower proximate order of f relative to T(r,f) if

(i) A¢y is non-negative and continuous for r = o, say,
' (ii) A is differentiable for r>r, except possibly at isolated points at which A s(r—0)and
A s (r + O)exist,
(lll)lln’lr_,00 Af(r) = Af,<00
(|V) limr_,oo Tl'f(r)logr = 0and

----- T(rf) _
PP

Definition 7 A function p;,is called a proximate order of f relative to T(r,f) if

(i) pry is non-negative and continuous for r = ro, say,
(ii) ps ¢y is differentiable for r > r, except possibly at isolated points at which p'f(r — 0)and
p'f(r + 0)exist,
(“I)hmr—mo pf(r) = pf,<oo
iv) lim,, 7p'¢nlogr = 0 and
f)

B T(.f)
(V) limisSup, Lo, T = 1

In this paper we study of some aspects on the compartative growths of maximum terms of two entire functions
with their corresponding left and right factors. We do not explain the standard notations and definitions on the
theory of entire functions because those are available in [8] .

Lemmas.
In this section we present some lemmas which will be needed in the sequel.

Lemmal Letfand g beanytwo entire functions with g(0)=0. Then for all sufficiently large values of r,

1 /1 r
ur.feg) 24 u (gu (Z.g) - Ig(O)I.f)-
Lemma?2 Let f and g be any two entire functions. Then for every aand 0 < r < R,

R
u(r,feg) < ai # (Ra_ ru(R.g),f)-

Lemma3 Let f be a meromorphic function and g be trascendental entire.If p;,, < oo then p(s yy = 0.
Lemma4 If f and g be two entire functions .Then for sufficiently large values of r ,

M (54 (5.9) = 190O)LF) S MG £+ g) < MG, 90,1,

Lemma5 If f be any entire function of order zero.Then
0] Py =1 and (i) A* sy = 1.

Lemma6 If f be an entire function. Then for >0 the function 7+~ is an increasing function of r.
Lemma 7 If fbe an entire function . Then for §>0 the function *"°~4™ js an increasing function of r.
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Proof: Since

d ’
Er’lf”‘lf(r) = {rArto-t® - rA; (P)logririrti=ir® >

the function r*/*°~4/) is an increasing function of r.

Lemmas8 If f be an entire function . Then for >0 the function r*/ *¥=*7 (") js an increasing function of r.
Lemma9 Let f be an entire function and

d
F=rgm -] o +q)
j=1

then,
T(r,F)=(m+m+yY)Tu,f)+S, f).
where
Y= Z}i=1 Y-
i.e., in other words as lim, _,,, 222 = 0,
T(@r.f)
then,
li (. F) (n+m+y)
im =(m+m+y).
r—00 T(T,f)

Analogusly, for @[f], we may have the following lemma:

Lemma 10 Let f be an entite function and F, ¥ be as defined earlier. Then

: TrolfD _
lim,_,, o = m+m+y).

Lemma 11 Let f be an entite function and F, ¥ be as defined earlier. Then the order (lower order) of f and F are
equal. Further their types or = (n + m + y)orand o;=(n + m + y) ;.

Proof: In view of Lemma 8, we obtain that

..... log T (r,F)
logr
,,,,, log (n+m+y)T(r,f)+S(r.f)

logr

»»»»» log T(r.f)+0(1)
logr

:pf'

In a like manner,
logT(r, F)

log¥ (1)

,,,,, log (n+m+y)T(r,f)+S(r,f)
log¥ (r)

————— Iog 7(rf)+0(1)

log¥ (r)

=Py

In the line of Lemma 8 and Lemma 9, we may obtain the following two lemmas respectively.

Lemma 12 Let f be an entire function and F, p[F] be defined as above. then, pr = pgr and or = gy
The proofs are omitted.
Analogously, the following lemma can be derived:

Lemma 13 Let f be an entite function and F, ¥ be as defined earlier. Then
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Poif1 = Polflw)
Aoir1 = Air1wy and
Og[f] = 9@lf1Y) -

In the line of Lemma 10 we may prove the following Lemma:

Lemma 14 Let f, F and @[f] be defined as above. Then

Pwifw) = P wys
Awinw) = A and
O(elf1w) = O(fw)-

Main Results.
In this section we present the main results of the paper.

Theorem 1 Let f and g be any two entire functions with 0 < A4y < p(ruy < 0 and 0 < p,yy < 0. Also let
0 < 0gw) < Ogw) <

Further suppose that @[g] be the difference monomial in g. for n,m,y; = 1. Then

---- log Hu(r.fog) > ( 1 ) T )0 (5
logu (r,8[g]) — \n+m+y/ ggyya” @¥)

Proof: We obtain from Lemma 1 for a sequence of values of r tending to infinity,
log? u(r, f o 9) = log? {2 (u(%,9) — 19(0)L.£)}

i.e., log®™ u(r,f o g) = (pisw)y—€) log{%u Gg)} +0(1)
i.e., log? u(r,fog) = (p(f,q,)—e)logé + (p¢rwy—€) logu (%,g) +0(1)

(D)
Again from the definition of lower type, we have for arbitrary positive € and for all sufficiently large values of r,
by Lemma 10
r _ w(r)\Pa¥)
togt(5,9) 2 (G —) () "
- (2)
Therefore from (1) and (2) it follows for a sequence of values of r tending to infinity,
1 _ Y(r)\ e
log® u(r, f = 9) 2 (pywy = )log g + (P =€) (Ggw) — ) ( 1 ) +0(1)
- (3)
where we choose (> 0) in such a way that
0< e< min{p(f,g,),c?(gy)}.
Also for all sufficiently large values of r,
logu(r, ®lgD) < (n+ m+y) (0w + &) (W (r)Posv)
logu(r,®lgD) < (n+m+y) (0w + €)W () .
(4
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Now from (3) and (4) it follows for a sequence of values of r tending to infinity,

(9.
log!? u(rfog) < (o) -E)log 5o 1)~ @)= () +o)
logp (r@lgD) — (m+m+y)(oguyte)r’ @) :
As e(> 0) is arbitrary, we obtain that
..... lO 2] r,Jo (o] ')
limiup, ., 2 prfeog) @¥p )

logu(r,@lg) ~— (n+m+y) o4’

This proves the theorem .
In this line ,Theorem 1 one may easily prove the following corollary.

Corollary 1 Let f and g be any two entire functions with 0 < Ay < pry) < o0 and 0 < p(,yy < 0. Also let
0< Og,w) < oo,

Further suppose that @[g] be the difference monomial in g for n,m,y; = 1. Then

..... log2ly(r,fog) > Agw)
logu (r,@lgl) — 4P @¥)’

If f be any entire function of order zero then the following corollary can also be proved with the help of the
growth indicator A", for entire £ in terms of its maximum term.

Corollary 2 Let f be any entire function of order zero such that 0 < 2™,y < oand g be any entire function of
finite order 0 < gy y) < o0..

Further suppose that @[g] be the difference monomial in g. Then
----- logPlu(r.feg) o A )
logu(r@lgh) — 4@

Remark 1 If we take 0 < Ay vy < pgw) < o instead of " finite order with " 0 < o4y < o0. in corollary 2 and
the other conditions remain the same then with the help of growth indicators p* ) for entire f in terms of its
maximum terms and in view of Lemma 6 and Lemma 10 it can be carried out that
,,,,, log®lu(r, f o
limiSup, e M > 1.
logu(r, 8[g])
Theorem 2 Let f and g be any two entire functions with 0 < A4y < prwy < o0 and 0 < p(gyy < .
Also let 0 < E(g,g;) < O'(g’g;) < 00,

Further suppose that @[g] be the difference monomial in g. for n,m,y; = 1. Then

,,,,, log[z]u(r,fog)< P(f¥)9(g.¥)
logu (r@lgl) — (+m+1)7(gw)

Proof: Sincefor0<r <R,

u(r f) < M(r,f) < Z—u(r, f),

by Lemma 4 it follows for all sufficiently large values of r that

p(r,feg) < M(r,feog) < MM(r,g),f)
log?lu(r, f o g) < log®M(M(r, 9), f)
e, log® u(r,feg) < (pyw) + €)logM(r, g).
..(6)
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Also for all sufficiently large values of r that

logM(r,g) < (0(gw) +&)(W(r))PE®
i.e,, logM(r,g) < (0(g4)+€) (P (r)) @ by Lemma 10.

. (7)

Therefore from (6) and (7), we have for all sufficiently large values of r,

Log® u(r, f o 9) < (prw) + &) (g + (W) .
..(8)
Again for all sufficiently large values of r,
logu(r,8[g]) = (n+m +y) (0w — &) (¥ () "

e, logu(r,8[g]) = (n +m +y)(aw) — (¥ ()", by Lemma 10,

(9

Now from (8) and (9), we obtain for all sufficiently large values of r,
log[z]y(r,f °g) - (p(f.'i”) + g)(o(g_,,u) + &) (¥ ()P
logu(r,@lgD) ~ (n+m+y) (0w — (W) “?
ie.,
..... logPlu(rfeg) _ _PGaro@w)
logu (r,8lg]) ~ (n+m+1)5(g )

This completes the proof of the theorem.
The following theorem is a natural consequence of Theorem 1 and Theorem 2.

Theorem 3 Let f and g be any two entire functions with 0 < A; 4y < prwy < @ and 0 < p, yy < 0. Also let
0< a(g’q/) < O'(g’q/) < 00,

Further suppose that @[g] be the difference monomial in g. for n,m,y; = 1. Then

1 T(g¥)p R log 21y (r fo PiFuT
( ) v ’qf,,) < limiSup, o 2 o) o _PUBG@H)
n+m+y/ o(gp)4 @¥) logu (r,8[g]) (n+m+y)agw)

The proof is omitted.

If f be any entire function of order zero, then the following theorem can be carried out in the line of
Theorem 1 and Theorem 2.

Theorem 4 Let f and g be any two entire functions with 0 < A¢s 4y < p(rwy < @ and 0 < p, ) < 0. Also let
0 <64y <0y <o.andfor n>1, and @[g] is a difference polynomial in g . Then,

( 1 )E(g'l")"**(f.‘ﬁ) < limfiup, _,, 02RO S0  Pymoe)
n+mty /) o (g pyaf 0¥ T7% logu(r@lg) T (n+m+y)a(gw)

Remark 2 Ifwe take 0 < Ay ) < p(qw) instead of " finite order with " 0 < G4y < 0(4,»y < .in Theorem 4
and the other conditions remain the same then with the help of growth indicators p* f for entire £ in terms of its
maximum term and Lemma 5 and Lemma 10 it can be carried out that

A log@lu(r, f o
O < Yimup, g u(r, f g)<p(g,¥’)

P.w) log?lu(r,0lg9]) = Agwy

where, @[g] is a difference polynomial in g .

Theorem 5 Let f and g be any two entire functions with 0 < A¢sy) < p(fwy < @ and 0 < p, ) < 0. Also let
0 < d(gy) < 0w <o.andfor n>1, and @[g] is a difference polynomial in g .
Then
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logPlu(rfog) o Ayw)T(gw)
’ logu (r,@lg) — (n+m+y)oguy

Proof: We obtain from Lemma 1 for all sufficiently large values of r that
log? u(r,f o ) = log® {u (G (%.9).f)}
i.e., log?® u(r, f o g) = (Asw) —€)log (%u Gg)) +0(1)
ie, log® u(r,fog) = (Agw) — s)log% + (A¢ruy —€)logu G,g) +0(1).

..(10)
Therefore from (2) and (10), it follows for all sufficiently large vaules of r
2] L ' )"
lOg ,Ll(T,f ° g) > (A(f’ql) - e)logg + (A(f’ql) - 8)(0’(‘%4})—6)# + 0(1)
- (11)

Combining (4) and (11), we obtain for all sufficiently large values of r,

P (g.#)
— v () 9
log P fog) o B S92 g0y Mog (=€) g~ —

logu (r@lgD) — (ntm+y) (0 (g p)+e) (@) @F)

+0(1)

Since (> 0) is arbitrary it follows from the above that
----- logPlu(r.fog) o Auw)w)
ﬂ—wo = .
logu (r.0[g9]) (n+m+y)o(gw)

Thus the theorem follows.

Theorem 6 Let f and g be any two entire functions with 0 < Ay yy < pryy < o0 and 0 < p(,yy < 0. Also let
0 < gy < 0oy <o.andfor n>1, and @[g] is a difference polynomial in g
Then

log®u(r, f = g) < Aty 0 9)
logu(r,®lgD) ~— (n+m+y)dgw

.Proof: Sincefor0 <r <R,

u(r, f) SM(r, ) S Z=uR f)

by Lemma 4 and the above inequality it follows for a sequence of values of r tending to infinity,

p(r.feg) < M(r,feg)<MWM(r,9).f)
ie., logPlu(r,fog) <log®IMM(r,9),f)
ie, log®u(r,feg) < (Agw) +€)logM(r, g).

- (12)
Therefore from (7) and (12), we have for a sequence of values of r tending to infinity,
logPlu(r,f o g) < (Agwy +€)(0gw + &) (F (1)) e
.(13)
Now frrom (9) and (13), we have for a sequence of values of r tending to infinity, and by Lemma 10,
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log®lu(r.f o 9) _ Gyw) + &) (ogw) +&)@T) o
logu(r,0lg) ~ (n+m+7y) (0w — s)(‘l’(r))p(“"l")

----- logPlu(rfog) . _Auwow
logu (r@lg) — (m4m+y)a (4 w)
This completes the proof.
The following theorem is a natural consequence of Theorem 5 and Theorem 6.

Theorem 7 Let f and g be any two entire functions with 0 < Ay < pryy < o0 and 0 < p(gyy < 0. Also let
0 < gy < 0y <o.andfor n>1, and @[g] is a difference polynomial in g
Then
AT ) i logPlu(rfog) _ Auw)ow)
(tm+y)o(gw) logi (rlg)) ~ (tm+y)a(gyy’

The proof is omitted.
If f be any entire function of order zero, then the following theorem can also be carried out in the line of
Theorem 5 and Theorem 6.

Theorem 8 Let f and g be any two entire functions with 0 < Ay yy < pryy < o0 and 0 < p(,yy < 0. Also let
0 < gy < 0y <o.andfor n>1, and @[g] is a difference polynomial in g
Then

Ax* ()0, 9) < limfiinf._... log Py (r.fog) < GN(ADLCIDN
(+m+y)o(gw) T logp (r.@lg]) — (n+m+y)5(gy)

Remark 3 If we take 0 < Ay gy < p(gy) < oo instead of " finite order” with 0 < 6,y < (4 ) < o in Theorem
8 and the other conditions remain the same then with the help of growth indicators p *, , for entire £ in terms of
its maximum terms and in view of Lemma 5 and Lemma 10 it can be carried out that

----- logPlu@rfeg) _ Pgw)

Aoy
—4= < limi#n <
Plg.®) froeo log 2lu(r,0lg]) ~ Acgw)

where @[g]isa difference polynomialin g .
In this line of Theorem 6 one may easily prove the following two corollaries:

Corollary 3 Let f and g be any two entire functions with 0 < Ay < pryy < o0 and 0 < p(,yy < 0. Also let
0 <oy <0y <coandfor n>1, and @[g] is a difference polynomial in g

»»»»» log Pl (r.fog)
=2 PViI 9« i
logu (r.@lgl) — Puw)

Corollary 4 Let f be an entire function of order zero such that 0 < 2™ 4, < oo and g be any entire function of
finite order with 0 < gy y) <.
Then

log®u(r,f o g)
: oot ol =P o
logu(r,®[g])

Theorem 9 Let f be an entire function of order zero and g be an entire such that p,  is finite. Also let @[g] is
a difference mononomial in g .Thenfor0 <r <R,

logPlurfoq) _ 5

limiténf, ., logn ol =

P2

Proof: If, p**f = oothen the results is obvious. So we suppose that p**f <

Sincefor0<r <R,
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u(r, f) S M@, f) < Z—u(R.f) |
by Lemma 4 for (> 0) and for all sufficiently large values of r,
logu(r,f °g) < (p”, + &)logM(r, g).

Since T(r, g) < log*M(r, g) and (> 0) is arbitrary, it follows from the above that

i loglu(rfeog) _ .y £, LoaM@.9)
imiinf, < imiidnf, ., —————
logu(R,@[gl) +0(1) = 7 logT(r,9)

..... log yu(r.fog) logM (r,9)

logu (R,8[gD+0(1) T(r.9)

. (14)

Since
,,,,, T(rg9) _
rPg ™

’

for given (0 < &€ < 1) we get for all sufficiently large values of r,

T(r,g) < (1+¢&)rrs®
.. (15)

and for a sequence of values of r tending to infinity ,
T(r,g) > (1 —¢)rPs®
..(16)

Since logM(r,g) <3T(2r,g9) ,
for a sequence of values of r tending to infinity we get for any (> 0)

logM (r.g) . 3(1+e) (2r)Petd 1
T(rg) (=) "(2ryetitPean rPe®
3(1+¢)

<~ 7
T (-9

(2)p5+6’

because 1< +Ps( is increasing function of r . Since £(> 0) and §(> 0) are arbitrary, we obtain that

- l )
lim{‘énf, ., %Z)g) < 3.(2)e

- (17)

Therefore from (14) and (17) it follows that
. log®lu(r,feg)

< 3.p x%.,2Pg,
logu(r,8lgh - P™7

Thus the theorem is established.
In the line of Theorem 9 one can easily prove the following theorem using the definition of lower proximate
order.

Theorem 10 Let f be an entire function of order zeroand g be any entire with 4, < c . Thenfor0 <r <R,

log®lu(r, f o 9)

limitinf, ., logu(r, [0) [g])

< 3.p**f.2’19,
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where, @[g] is defined earlier.

Theorem 11:Let f and g be two non constant entire functions such that f is of lower order zero and A =x, and 4,
are finite. Then

----- logn(Rfog) o 1 A**f
logn (50lgl) — 3" 4%

where @[g] is defined earlier.

Proof. If A xx;= 0 then the result is obvious. So we suppose that A", > 0 Sincefor0 <r <R,

u(r,f) SM(r, ) < Z=u(R f) ,

With the help of the above inequality and Lemma 5 and for £(0 < & < minifii*", 1}) we get for all sufficiently
large values of r,

logu(R,f ° g) + 0(1) = logM(r,f ° g) = logM(GM(5), 9) — 19(0)L.f)
ie..logu(R,f o g)+0(1) = (X" — &)log{OM((), 9) — |g(0)[}
ie.logu(Rf o g)+0(1) = (X" - &)log{GHM((), )}

ie.,. logu(R,f o 9) +0(1) = (A" — &)logM((), 9) + QA" — &)log(E)
ie..logu(R,feg)+0(1) = (1 —¢&)T G,g) +0(1) .

..(18)
. e T(r,8lg]) _ 1
Since, liminf,_, o Rl v—
for given (> 0) we get for all sufficiently large values of r,
! — &)phe®
T(r,0lg) > oy (L= or
..(19)
and for a sequence of values of r tending to infinity,
! Ae()
T(r,0lgD) < e Il
..(20)
From (18) and (19) we get for §(> 0) and for all sufficiently large values of r
(r)zﬁs
° kk — Z—
logu(R,f o g) +0(1) 2 (A" —&)(1 = &) o, Y oes
Since ™94 is an increasing function of r it follows for all sufficiently large values of r that
logu(R o) > (& 1 e
Ogu(R,feg) +0(1) =2 (7 —&)(A = &) 7
- (21
So by (20) and (21) we get for a sequence of values of r tending to infinity
(1+¢&) (n+m+yY)T(r,0[g])
l R fo o1) = (A7 — .
ogu(R,f o g)+0(1) ( f S) (1—¢)" (m+m+y)drtd
f . (+e) T(r.0lg9])
ie.logu(R feg)+0(1) = (A" —¢ o eheit
. " (1+e) logh GOLg))
ie,logu(R,feg)+0(1) = (A7, —¢ Ty
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Since (> 0) and §(> 0) are arbitrary it follows from above that

i logn(R,feg) +0(1) _ 1 1
Imsup, o0 §

loguC, 091

i logn(R,f°9) |1 4
Imesup, oo ————— §

logu(, ®lg1)

which is independent of n,m, y.
Thus the theorem is proved.

Conclusion

The behaviour of the logarithmic derivative of an entire function is of much useful in the study of many
problems in the value distribution theory for such functions as well as in the study of properties of the
solutions of certain types of differential equations. The growth of integrated modulii of the logarithimic
derivative with respect to Nevanlinnas charecteristic functions in case of meromorphic functions is an active
area of research and therefore the estimation of respective growth indicators can be treated analogously.
Therefore in the present paper expectation of all the treatments made on difference polynomials can be done
from the view point of the interrelationship between integrated moduli of the logarithmic derivative of a
meromorphic function and that of Nevanlinna’s characteristic function.
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